Chemistry Assignment

The p block elements (Group 15-18)

- How many P

 P bonds present in cyclotrimetaphosphoric acid (HPO₃)₃?
- 2. What happens when conc. H₂SO₄, is slowly added to cane sugar?
- 3. In interhalogen compounds of the type AB₅ and AB₇, B is invariably fluorine. Why?
- 4. Why are the elements of Group 18 known as noble gases?
- 5. How many oxidation states are shown by nitrogen?
- 6. H₂S is less acidic than H₂Te. Give reason.
- 7. What is the composition of bleaching powder?
- 8. How will you prepare xenon oxytetrafluoride?
- 9. What happens when (give balanced chemical equation only):
- (a) ammonia is treated with sodium hypochlorite.
- (b) phosphine burns in chlorine.
- 10. Give four uses of bleaching powder.
- 11. CIF₃ exists but FCl₃ does not. Why?
- 12. Draw the structures of the following molecules:
- (i) SF₄, (ii) XeF₄
- 13. PCl₅ exists as [PCl₆]⁻ [PCl₄]⁻ but PBr₅ exists as [PBr₄]⁻ [Br]⁻. Explain.
- 14. Why are oxygen-fluorine binary compounds called Oxygen fluoride? Give the preparation of chlorine dioxide, CIO₂.
- 15. Why halogens are strong oxidising agents?
- 16. Give an equation in which the xenon fluoride act as a
- (i) fluoride donor, (i) fluoride acceptor.
- 17. Why does a nitric acid bottle appear yellow?
- 18. Compare: Maximum covalency of oxygen and sulphur.

OR

Compare: Structures of pentoxides of nitrogen and phosphorus.

- 19. Why (CH₃) ₃N is pyramidal, whereas (SiH₃)₃N is planar?
- 20. Why halogens are coloured?
- 21. Give reasons for the following:
- (i) Noble gases are mostly inert.
- (ii) Noble gases form compounds with fluorine and oxygen only.
- (iii) Neon is generally used for warning signals.
- 22. Account for the following:
- (i) NH, has higher boiling point than PH₃.
- (i) H₃PO₃ is diprotic acid.